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PROPERTIES OF THE SQUARE-ROOT DERIVATIVE TYPE CURVE 

T.A. J E L M E R T  
7"he University of Trondheim, Trondheim, Norway 

Abstract 

The conventional way to analyse well test data is by a' combination of type curve 
analysis and special analysis for specific flow periods. In many cases, these flow 
periods, radial, linear, spherical, etc., are identified by inspection of type curves. Once 
identified, the pressure versus some time function may be plotted as a straight line. 
Then, reservoir and well properties may be computed from the slope of the line and its 
position in the coordinate system. In this work, we propose a new type curve basgd on 
derivatives with respect to the square-root of time. The resulting type curve is useful 
for identifying linear flow regimes. Linear flow periods may appear in many cases, for 
example: flow towards horizontal wells, vertically fractured wells, etc. 

1. Introductory remarks 

The square-root  derivative type curve was developed as a result of  our 
invest igat ions on one phase flow towards restricted entry horizontal  wells. Hence,  
the properties o f  the square-root derivative type will be discussed in this context.  

A horizontal  well may  be defined as a well that is drilled parallel to the 
reservoir bedding plane. Developments  in drilling technology have made horizontal  
dril l ing a practical alternative to conventional  drilling. The insignificant pressure 
drop observed in horizontal wells indicates infinite conduct ivi ty  f low condit ions in 
the wellbore. It has been shown, however,  that a uniform flux solution evaluated 
at the equivalent pressure point accurately mimics the behaviour of  the corresponding 
infinite conduct iv i ty  solution [9, 10]. 

From a mathemat ica l  point o f  view, there is no difference between restricted 
entry vertical wells and horizontal  wells. Since most  producing formations are thin 
compared to their areal extent,  the interaction between the well and the exterior 
boundaries will be different  for the two cases. 

Previous invest igat ions have shown that the pressure response of  a constant  
flux horizontal  well in a box-shaped reservoir may exhibit  four distinct f low 
periods [1]. These f low periods are: 

(1) Early radial f low period. 

(2) Early linear f low period. 

(3) Late pseudo radial f low period. 

(4) Late  l inear radial f low period. 
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Since the flow periods are consequences of the interaction between the well 
and the exterior boundaries, it is quite possible that one or more of  these may not 
appear in an actual test. Then it may be advantageous to have quick methods to 
verify the existence of  those flow regimes that may be observed in a given test. 

In these distinct flow periods, the complex mathematical solution may be 
approximated by simpler expressions, referred to as limiting forms. These usually 
plot as straight lines and as a consequence have very simple interpretations. There 
is a possibility, however, that one may assume such a period when it actually does 
not happen. Then the resulting analysis will be erroneous. Hence, the correct 
identification of such a period is critical. 

While Odeh and Babu [1] proposed time criteria, we will propose the use of 
derivative type curves. The latter approach can be used for cases where the field 
data are not too contaminated by noise. 

2. Properties of the square-root derivative type curve 

We consider the flow of a slightly compressible fluid of constant viscosity 
towards a horizontal well of  length L w, arbitrarily located in a box-shaped reservoir. 
The reservoir dimensions are Lx, Ly and L Z, respectively. The well axis is parallel 
to the y-axis and the reservoir permeability is anisotropical. Listed in appendix A 
are the corresponding differential equations, and the dimensionless variables are 
given in appendix B. 

Line source solutions for uniform flux horizontal wells in slab- or box-shaped 
reservoirs are well known [1-5] .  For a box-shaped reservoir, the solution (to eqs. 
(A . I ) - (A.3) )  is: 

ld 

P d ( X d , Y d ,  Z d, t d) = f 
0 

APex 
f Ap~  APsy 

Yld 

(I) 

Here, we have assumed that production is at a constant rate and that the well 
may be modelled by a line source. 

The instantaneous "point" source solution for flow to the point (x~, y), z~) 
is given by the following [6]: 

APs (t) = APs x × APsy x APs z , (2) 

where Ap denotes pressure drop and the point of interest is given by the coordinates 
:ca, Ya, and z a. The terms in the source function Aps are listed in appendix C. The 
details regarding the computational procedure for evaluation of  eq. (1) have been 
discussed in a companion paper [7]. 
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Let PJw denote the derivative of  the dimensionless wellbore pressure with 
respect to dimensionless time t a. Then the general equation for the square-root 
derivative is: 

dPa~ - 2 ~ d  p ~  (3) 

and the logarthmic derivative [8]: 

dP~w 
- taPaw. (4) 

d l n t  d 

The above derivatives have some interesting special cases. In the case of  
radial flow, the corresponding limiting form for the dimensionless pressure is: 

Pdw = A In t d + B, (5) 

where A and B are constants. The value of the constants depends on whether the 
flow is of  the late pseudo radial or of  the early radial type (cf. appendix D). Then 
the square-root derivative is: 

dPaw 
= 2 A t ~  1/2 (6) 

and the logarithmic derivative: 

dPaw - A. (7) 
d l n t  a 

Let msq and ml denote the slope of the square-root and logarithmic derivatives, 
respectively, when plotted on log- log  paper. 

Note that the square-root derivative, eq. (6), will plot as a straight line with 
slope msq = - 1/2 on log- log  paper in a radial flow period. The logarithmic derivative, 
on the other hand, will plot as a straight line at a constant value, that is, mj = 0. Then 
it is easy to identify radial flow from the logarithmic derivative type curve. 

For both derivatives, the effect of  the constant A is to shift the straight line 
vertically in the coordinate system. 

In the case of a linear flow period, eq. (1) will have the following asymptotical 
form: 

Paw = A t 1/2 + B,  (8) 
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where the value of the constants A and B depends on whether the linear flow regime 
is of the early or late type (cf. appendix D). Taking the square-root derivative of 
eq. (8) yields: 

dPdw = A .  

 47£ 
(9) 

The logarithmic derivative of eq. (8) is: 

d Pdw 1 
= 73 t /2 (lO) 

d l n t  d 

Note that the square-root derivative, eq. (9), will plot as a straight line at a 
constant value during the linear flow periods. Hence, this flow regime is very easy 
to identify using the square-root derivative type curve. The logarithmic derivative, 
on the other hand, will plot as a straight line with slope msq = 1/2 on log - log  paper. 

During the pseudo-steady state period and during the early period, when the 
pressure response is dominated by wellbore storage, it is commonly accepted that 
the pressure is a linear function of time. Then, 

Pdw = A t d + B ,  (11) 

where the value of the constants A and B depends on the flow regime. Taking the 
square-root derivative of eq. (11) yields: 

d P a ~  - 2A t 1/2 

d 
(12) 

and the logarithmic derivative is: 

dP~w 
- A t  a. (13) 

d l n t  a 

Observe that both derivatives will plot as straight lines on log- log  paper. The 
square-root derivative straight line will have slope msq = 1/2, while the logarithmic 
derivative will have a slope m t = 1. 

During the bilinear flow period, for a finite conductivity fracture, the pressure 
response is given by: 

Paw = A td 1/4 + B. (14) 
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Then the square-root derivative of eq. (14) is: 

dPaw = 1 A  ta 1/4 (15) 

and the !ogarithmic derivative is: 

dpdw = 1 ? / 4  
dlnta  ~-A (16) 

Note that the two derivative type curves will plot as straight lines with slope 
msq = -1/4 and m I = 1/4, respectively. 

3. The fourth-root  derivative 

In the same way as we proposed a square-root derivative for easy identification 
Of linear flow, one may propose a fourth-root derivative for easy identification of 
a bilinear flow period. 

Then this derivative may be computed from the chain rule as: 

d paw .3/4 , (17) - 4 ta Pa . 
d t l / 4  

Taking the derivative of eq. (14) with respect to the fourth-root of ta yields: 

dp,~ =A.  (18) 
dt~/4 

Hence, the fourth-root derivative type curve, eq. (18), will plot as a horizontal 
straight line during the bilinear flow period. 

4. Test on the square-root  derivative 

The first test case is for a well/reservoir system where the length of the well 
is small compared to the reservoir dimensions. This corresponds to a drainhole. The 
result is plotted in fig. 1. Here, we have used the conventional approach, i.e. 
plotting dimensionless pressure and the logarithmic derivative in log-log coordinates. 
In this case, two radial flow periods are easily identified by the horizontal lines in 
the logarithmic derivative. The interpretation of the transitional period between the 
two radial periods is not so obvious. 

The transitional curve may look like a straight line. Hence, there is a possibility 
for linear flow. If it can be shown that the slope msq = 1/2, then one may conclude 



296 T.A .  J e l m e r t ,  T h e  s q u a r e - r o o t  d e r i v a t i v e  t y p e  c u r v e  

0 
/ 

C 

"0 
G_ 

/ /  
i ///* 

- / 
/ 

Z / / 
/ / 

l/ / I 
-o. j' / /  

/ " / /  / 

/ , / ' /  / 
/ 

/ "  
/ / 

~ 3 -'-X } -~  0 - ' i  0 - ~ 0  -:]  ', - " 0  ~ 0 : 0 " ~ i 0 " 1 0 ~ ! 0  ~ 

T ~a 

Fig. 1. Wel l  located at x a = 500,  500 < Ya < 502, z a = 0.25.  Reservoir  d imen-  

s ions:  Lxa = 1000, Ly a = 1002, L,a = 0.4. kJk. r = 1, k,/k:, = 1, rwa = 0 .001.  
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Fig. 2. Wel l  located at x a = 500,  500  < Ya < 502,  z a = 0.25.  Reservoir  d imen-  

s ions:  Lxa = 1000, Ly d = 1002, Lza = 0.4. k,,/k.y = 1, kz]k x = 1, rwa = 0 .001 .  
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that the flow is of  the linear type. To reach this conclusion requires computations. 
The more direct approach is to plot the square-root derivative. This has been done 
in fig. 2. Using this approach, a linear flow period may be identified by a horizontal 
line in the square-root derivative type curve. Observe that no such line exists. 
Hence, one may conclude that the linear flow period does not exist for this 
well/reservoir configuration. Furthermore, observe that the radial flow periods plot 
as straight lines with slope mt = -1 /2 .  In addition, observe the transition between 
the late radial flow period and the pseudo-steady state period where the square-root 
derivative changes from a straight line with slope mx = - 1 / 2  to another one with 
slope ml = 1/2. 

The next test case is for a rectangularly shaped drainage area, where the 
length of  the well is of  the same order of  magnitude as the drainage area. In 
addition, the height of  the reservoir is small compared to the length of the well. The 
pressure response, using the conventional type curves is shown in fig. 3. By inspection 
of the pressure derivative type curve, one may conclude that an early radial flow 
period exists. In the next stage one may see a possible straight line. Then the curve 
exhibits some curvature and then once again a possible straight line section t~fore 
going into pseudo-steady state. Hence, in this case there is a possibility of  two 
linear flow periods. Again, we have plotted the result using the square-root derivative, 
cf. fig. 4. Note that by using this plot, it is easy to identify two linear flow periods. 
The last one corresponds to flow in a sand channel. 

As a final example, we tested a well/reservoir system characterized by a 
square drainage area and a well length that is of  the same order of magnitude as 
the length of  the reservoir. In this case, however, the reservoir height Lza is larger 
than for the previous test case. The result using the conventional type curves is 
shown in fig. 5. From this plot, we may conclude that there is a radial flow period 
initially. Then there is a possible straight line section in the logartithmic derivative 
before pseudo-steady state is reached. Hence, a linear flow period is possible. From 
the square-root derivative type curve, shown in fig. 6, one may conclude that there 
is no linear flow period in this case. It is interesting to note that for this sytem, there 
is an initial radial flow period, a transitional period and then pseudo-steady state 
only. 

5. Conclusions 

A new type curve has been proposed. When combined with the logarithmic 
derivative type curve, it is useful for easy identification of  flow regimes. 

This type curve is easily incorporated into an existing program. It requires 
one additional line of  coding only: 

= 2 G V g .  
aG 

(19) 
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One normally computes the time derivative of  pressure anyway to compute the 
logarithmic derivative. 

We believe that the main application for the new type curve will be for the 

horizontal wells, vertically fractured wells, and channel sands. 

Nomenclature 

c t = system compressibility (psi-l). 

h = reservoir height. Same as L z (ft). 

k, = absolute reservoir permeability in the x-direction (md). 

ky = absolute reservoir permeability in the y-direction (md). 

k Z = absolute reservoir permeability in the z-direction (md). 

L w = well length (ft). 

L x = reservoir length in the x-direction (ft). 

L,a = dimensionless reservoir length in the x-direction. 

Ly = reservoir length in the y-direction (ft). 

Ly a = dimensionless reservoir length in the y-direction. 

L, = reservoir length in the z-direction (ft). 

Lzd = dimensionless reservoir length in the z-direction. 

mt = slope of  logarithmic derivative type curve. 

msq = slope of  square-root derivative type curve. 

p = pressure (psi). 

Pa = dimensionless pressure drop. 

Paw = dimensionless wellbore pressure drop. 

q = sandface rate (bbl/day). 

r~ = square root of ratio kJky.  
r= = square root of ratio k,/k, .  
S a = skin factor due to damage. 

St = total skin factor due to damage and restricted e n t u .  

t = time (hours). 

t a = dimensionless time. 

x = distance along the reservoir x-axis (ft). 

x" = x-coordinate of horizontal well axis (ft). 

y = distance along the reservoir y-axis (ft). 

Yl = y-coordinate at the leading tip of  the well (ft). 

Y2 = y-coordinate at the ending tip of  the well (ft). 
y '  = y-coordinate of any point on the horizontal well axis (ft). 

yf  = y-coordinate of a grid point on the horizontal well axis (ft). 

z = distance along the reservoir z-axis (ft). 

z '  = z-coordinate of horizontal well axis (ft). 
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Greek symbols 

Apty = pressure drop in the y-direction due to an instantaneous line source at 
Yl < Y" < Y2 of  unit strength (psi). 

Aps x = pressure drop in the x-direction due to an instantaneous point source at 
x = x' of  unit strength (psi). 

Ap,y = pressure drop in the y-direction due to an instantaneous point source at 
y = y' of  unit strength (psi). 

Aps z = pressure drop in the z-direction due to an instantaneous point source at 
z = z' of unit strength (psi). 

= reservoir porosity (fraction). 

# = fluid viscosity (cp). 

zr = constant (= 3.142). 

Subscripts 

d = dimensionless. 

x = x-direction. 

y = y-direction. 

z = z-direction. 

Appendix A: Mathematical model 

Consider the following reservoir model. A well of  radius r w and length L w is drilled 
parallel to the y-direction in a box-shaped reservoir. All the external boundaries are 
of  no-flow type. 

0p= 
On 0, Vt, (A. 1) 

where n is the vector perpendicular to the boundary planes. 
The reservoir is initially at rest, that is, 

P=Pi ,  t=O, Vx ,  y , z ,  (A.2) 

where the index i denotes initial conditions. 
The reservoir dimensions are L x, Ly and L z, res~ct ively .  The well is located 

at x 0, z 0 and extends from Yl <Y' <Y2. 
The reservoir is homogeneous and anisotropic. The well is produced at a 

constant rate q. The line source assumption is implied. 
Fluid flow in a porous medium is governed by the diffusivity equation, which 

is given below. 
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ky 32p kz 32p 3p kx 32p + __ _ _  + - ~c (A.3) 
"~-Ox "---~ /1 ~)y2 /1 0z 2 "~"  

Appendix B: Dimensionless variables 

Following Babu and Odeh [2, 3], letting L w denote the well length, we define 
the following dimensionless variables: 

Dimensionless pressure drop pa(xd, Ya, za, ta): 

Pd(Xd, Yd ' Zd' td ) = ~ x k y  Lz A p ( x , y ,  z, t) 
141.2q# 

(B. 1) 

Dimensionless time ta: 

4(0.000264) k ~  ky t (B. 2) 
t . :  2 

Dimensionless position (x a, Ya, zd): 

(xa, Ya, zd) = (2x /L~,  2y /L  w, 2L~/L.,).  (B.3) 

Dimensionless reservoir dimensions L~ x Ly a x L~d: 

L,~d x Ly d x Lzd = 2 G / L  ., x 2Ly /L  w x 2Lz/L  w. 

x - y  permeability ration rv: 

rxY = ky 

z - x  permeability ratio r~: 

rzx = kx 

(B.4) 

(B.5) 

(B.6) 

Appendix C: The mathematical solution 

In terms of these dimensionless variables, the solution to eqs. (A.1), (A.2) 
and (A.3) is given by: 
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ld 

f Apff Pd(Xd,Yd,  Zd, td) = ~Lzd 

0 

f Ap}z APsy d-d~ a dT. 

Yld 

(c. 1) 

Here, we have assumed that the constant production rate q is uniformly distributed 
over the length of the well L w = Y2 - YP This is the so-called uniform flux assumption. 

A few general remarks on eq. (C.1) may be of interest. 
The instantaneous "point" source solution for flow to the point (x', y', z') is 

given by the :following [6]: 

Ap; (t) = Ap;~ x Ap~y x A p ~ ,  (C.2) 

where Ap denotes pressure drop and the point of interest is given by the coordinates 
x, y and z. 

An instantaneous "line" source may be regarded as the superposition of an 
infinite series of point sources. Hence, the point source solution is integrated with 
respect to Yd along the axis of the well. 

The continuous line source in turn may be regarded as a superposition of  an 
infinite series of instantaneous line sources. Hence, the line source solution may be 
integrated with respect to • from ta to 0. As a result of these operations, we obtain 
eq. (C.1). 

In terms of our dimensionless variables, the various components on the right- 
hand side of eq. (C.1) are given by the following: 

, (  - n.x  n.x  In2.2.. 1) dx'd - Lxd l + 2 ~ _ , c o s ~ c o s - - e x p  Lz , (C.3.1) 
. = l  gxa gxa xd 

or equivalently, 

APex 

Ox5 
2 (  (x,a+(_l)ixd_2nLxd)21. 

_ 1 ~ ,~  exp - 4--~xy ~a ) 
2 ~ x y  t d n=-~* i=1 

(C.3.2) 

Similarly, 

,(, = - cos ~ cos ~ exp - 
, = ,  

(C.4.1) 

or equivalently, 

Ap;, 
dz'a 

_ 1 ,~  e x p  
241rrxy r2x td l=- k=l 

(z~/+ ( -  1)kZd - 21Lzd) 2 "~ 

4rxy r2x td ) 
(C.4.2) 
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Finally, 

o r ,  

Y2d 

f APsy 
Yld 

Iyi] A P s y  = 

Yld _.1 

(Y2d--Yld + 4 ~ 1 (m~(Y2d+Yld) 1 
~,~ ~ =1 m cos 2t_,y,~ 

x sin(mTr(YZd--Yld) ) 2 L y d ) ( - m 2 1 r 2 ( t d / r x y ) ,  exp~ LyEd 

 lerfI Y2 +  I 
m = - ~  j = l  2 ~  

2 ta~x y 

(c .5.1)  

(c .5.2)  

The calculation procedure for efficient evaluation of the above infinite series 
has been described in a companion paper [7]. 

Appendix D: Limiting forms of the analytic solution 
Early radial drawdown: 

The drawdown equation in this period is given by: 

162.6q#B (log ~ t  ) 
Pwf =Pi k~k~ L~ ~, qb#ctr 2 -3.23+0.87Sd . (D. 1) 

Early linear drawdown" 
In the early linear flow period, the flow behaviour is given by: 

Pw = Pi 
8.13q#B I I  ' t 

Lwh CUc, ~x 

17.37h ( ~  ln--rwh +0.251n kXkz - ln(sin "~0-)- 1"838 + Sd)]" (D'2) 
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Late radial drawdown: 

The drawdown equation for this period is given by: 

Pwf = Pi 
I ky t 162.6q#B log (~#ctL 2 

k4kxx h 
1.76 

+0.87 ~ ln--+0"251nk-~-z - l n r w  sin --1.838+Sd . (D.3) 

Late linear drawdown: 

In the late linear flow period, the drawdown behaviour is given by: 

Pw : t~ 
8.13q#B [I t 

+ 17"37"-'-'~h ( l n h k ~ x k z  \ rw + 0"25 lnkXk--~- - ln~.sm--~)-  1838+S, . (D.4) 
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